1.周界入侵与视频智能分析 |
1.21 |
Wei Wang, Yongde Zhang, Liqiang Zhu. DRF-DRC: dynamic receptive field and dense residual connections for model compression [J]. Cognitive Neurodynamics. 2022 |
1.20 |
Yao Wang, Zujun Yu, Liqiang Zhu. Intrusion detection for high-speed railways based on unsupervised anomaly detection models [J]. Applied Intelligence. 2022, 53:7(8453-8466) |
1.19 |
Runliang Tian, Hongmei Shi, Baoqing Guo, Liqiang Zhu. Multi-scale object detection for high-speed railway clearance intrusion [J]. Applied Intelligence. 2022, 52:4(3511-3526) |
1.18 |
Wei Wang, Liqiang Zhu. Structured feature sparsity training for convolutional neural network compression [J]. Journal of Visual Communication and Image Representation. 2020, 71:102867(1-8) |
1.17 |
Wei Wang, Liqiang Zhu, Baoqing Guo. Reliable identification of redundant kernels for convolutional neural network compression [J]. Journal of Visual Communication and Image Representation. 2019, 63:102582(1-12) |
1.16 |
Wang, Yao; Zhu, Liqiang; Yu, Zujun. Foreground Detection for Infrared Videos using Multi-scale 3D Convolutional Neural Networks. IEEE Geoscience and Remote Sensing Letters, 2019,16((5):712-716 |
1.15 |
Wang Yang, Zhu Liqiang, Yu Zujun, Guo Baoqing. An Adaptive Track Segmentation Algorithm for a Railway Intrusion Detection System [J]. Sensors,2019, 19(11):2594(1-21) |
1.14 |
Baoqing Guo, Gan Geng, Liqiang Zhu, Hongmei Shi and Zujun Yu. High-Speed Railway Intruding Object Image Generating with Generative Adversarial Networks[J], Sensors, 2019,19(14):3075 |
1.13 |
Wang Yao, Yu Zujun, Zhu Liqiang. Foreground Detection with Deeply Learned Multi-Scale Spatial-Temporal Features [J]. Sensors, 2018,18(12):4269 |
1.12 |
Guo, Baoqing, Zhou Xingfang, Lin Yingzi, Zhu Liqiang, Yu Zujun. Novel Registration and Fusion Algorithm for Multimodal Railway Images with Different Field of Views, Journal of advanced transportation, 2018 |
1.11 |
王玮,朱力强. 基于特征图裁剪的高铁周界入侵实时检测算法. 铁道学报,2019, 41(9):74-80. |
1.10 |
王尧,余祖俊,朱力强,郭保青. 基于高阶全连接条件随机场的高速铁路异物入侵检测方法[J]. 铁道学报,2019,41(5):82-92 |
1.9 |
王洋,朱力强,余祖俊,郭保青. 高速铁路场景分割与识别算法[J]. 光学学报, 2019,39(06),119-126 |
1.8 |
郭保青,马学志,余祖俊,王耀东,朱力强*.基于PTZ相机极向投影的铁路限界自动识别方法,铁道学报,2018,40(11):62-69. |
1.7 |
郭保青,王宁. 基于改进深度卷积网络的铁路入侵行人分类算法,光学精密工程,2018, 26(12):3040-3049. |
1.6 |
郭保青*,余祖俊,张楠,朱力强,高晨光.铁路场景三维点云分割与分类识别算法,仪器仪表学报,2017,38(9):2103-2111. |
1.5 |
王洋,余祖俊,朱力强,郭保青.基于CNN的高速铁路侵限异物特征快速提取算法[J].仪器仪表学报,2017,38(05):1267-1275. |
1.4 |
郭保青,杨柳旭,史红梅,王耀东,许西宁*.基于快速背景差分的高速铁路异物侵入检测算法[J],仪器仪表学报,2016,37(6):1371-1378. |
1.3 |
王尧,余祖俊,王中卫,李长春. 基于PFGA的铁路异物入侵检测. 铁道学报,2016, 38(3) |
1.2 |
史红梅, 柴华, 王尧, 余祖俊. 基于目标识别与跟踪的嵌入式铁路异物侵限检测算法研究[J]. 铁道学报, 2015, 37(07): 58-65. |
1.1 |
同磊,朱力强,余祖俊,郭保青.基于车载前视摄像机的轨道异物检测[J].交通运输系统工程与信息,2012,12(04):79-83+134. |
2.超声与无损检测 |
2.15 |
Xiangyu Duan, Liqiang Zhu, Zujun Yu, Xining Xu. Estimating the Axial Load of In-Service Continuously Welded Rail Under the Influences of Rail Wear and Temperature [J]. IEEE Access, 2019, 7(1):143524-143538 |
2.14 |
Hongmei Shi, Lu Zhuang, Xining Xu, et al. An Ultrasonic GuidedWave Mode Selection and Excitation Method in Rail Defect Detection[J]. Applied Sciences, 2019,9,1170,1-22. |
2.13 |
Bo Xing, Zujun Yu, Xining Xu, et al. Research on a Rail Defect Location Method Based on a Single Mode Extraction Algorithm[J]. Applied Sciences, 2019,9,1107,1-16. |
2.12 |
Xu Xining, Xing Bo, Zhuang Lu, Shi Hongmei and Zhu Liqiang. A Graphical Analysis Method of Guided Wave Modes in Rails. Appl. Sci. 2019, 9, 1529,1-19. |
2.11 |
XU XINING, ZHUANG LU, XING BO, et al. An Ultrasonic Guided Wave Mode Excitation Method in Rails[J]. IEEE Access, 2018,6: 60414-60428. |
2.10 |
牛笑川,朱力强,余祖俊,李国直.无缝钢轨中温度对应力非线性超声检测的影响[J].声学学报,2019,44(02):241-250. |
2.9 |
朱力强,闻志强,邬成健,王尧.高寒地区高速铁路路基冻胀远程监测[J].铁道学报,2019,41(01):109-116. |
2.8 |
邢博,余祖俊,许西宁等. 基于激光多普勒频移的钢轨缺陷监测[J]. 中国光学,2018,11(6):991-1000. |
2.7 |
王嵘,余祖俊,朱力强,许西宁.基于导波多模态融合的无缝钢轨温度应力估计算法[J].铁道学报,2018,40(06):136-143. |
2.6 |
王嵘,余祖俊,朱力强,许西宁.基于导波速度的无缝钢轨应力检测方法[J].中国铁道科学,2018,39(02):18-27. |
2.5 |
史红梅, 余祖俊, 朱力强, 刘文琪. 高速铁路无缝钢轨纵向位移在线监测方法研究[J]. 仪器仪表学报, 2016, 37(04): 811-817. |
2.4 |
朱力强,许西宁,余祖俊,史红梅,段翔宇.基于超声导波的钢轨完整性检测方法研究[J].仪器仪表学报,2016,37(07):1603-1609. |
2.3 |
余祖俊,许西宁,史红梅等.钢轨中超声导波激励响应计算方法研究[J]. 仪器仪表学报, 2015, 36(9): 2068-2075. |
2.2 |
许西宁,郭保青,余祖俊,等. 半解析有限元法求解钢轨中超声导波频散曲线[J]. 仪器仪表学报, 2014, 35(10): 2392-2398. |
2.1 |
许西宁, 余祖俊, 朱力强, 史红梅. 半解析有限元法分析兰姆波频散特性[J]. 仪器仪表学报, 2013,34(2): 247-253. |
3.隧道裂纹与全断面检测 |
3.7 |
Qimin Gong, Liqiang Zhu, Yaodong Wang, Zujun Yu. Automatic subway tunnel crack detection system based on line scan camera
[J].Struct Control Health Monit., 2021,28(8):e2776. |
3.6 |
王耀东,朱力强,史红梅,方恩权,杨玲芝.基于局部图像纹理计算的隧道裂缝视觉检测技术[J].铁道学报, 2018,40(02):82-90. |
3.5 |
王耀东,朱力强,余祖俊,郭保青.用于机械系统瞬时目标的双视角高速视觉检测系统[J].光学精密工程, 2017,25(10):2725-2735. |
3.4 |
朱力强,王春薇,王耀东,余祖俊,郭保青.基于特征点集距离描述的裂缝图像匹配算法研究[J].仪器仪表学报,2016,37(12):2851-2858. |
3.3 |
王耀东,朱力强,史红梅,郭保青.高速机械系统运动特性的实时视觉检测技术研究[J].机械工程学报, 2016,52(02):82-90. |
3.2 |
朱力强,白彪,王耀东,余祖俊,郭保青.基于特征分析的地铁隧道裂缝识别算法[J].铁道学报,2015,37(05):64-70. |
3.1 |
王耀东,余祖俊,白彪,许西宁,朱力强.基于图像处理的地铁隧道裂缝识别算法研究[J].仪器仪表学报,2014,35(07):1489-1496. |
4.轮轨缺陷动态检测 |
4.5 |
Shi Hui, Zhu Liqiang, Shi Hongmei, Yu Zujun. Estimation of Cement Asphalt Mortar Disengagement Degree Using Vehicle Dynamic Response[J]. Shock and Vibration, vol. 2019, Article ID 4281514, 11 pages, 2019. |
4.4 |
Shi Hui, Yu Zujun, Shi Hongmei, Zhu Liqiang. Recognition algorithm for the disengagement of cement asphalt mortar based on dynamic responses of vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(3): 270-282. |
4.3 |
Li Jianbo, Shi Hongmei. Rail Corrugation Detection of High-Speed Railway Using Wheel Dynamic Responses[J]. Shock and Vibration, vol. 2019, Article ID 2695647, 12 pages, 2019. |
4.2 |
赵蓉, 史红梅. 基于高阶谱特征提取的高速列车车轮擦伤识别算法研究[J]. 机械工程学报, 2017, 53(06): 102-109. |
4.1 |
史红梅, 赵蓉, 余祖俊, 朱力强. 基于钢轨振动响应分析的车轮扁疤检测方法研究[J]. 振动与冲击, 2016, 35(10): 24-28+54. |
|