智能机器人与系统研究所主要从事机器人、虚拟现实、力触觉交互系统、系统控制等方面的研究。近年来在国内外学术期刊发表论文400余篇,其中SCI检索论文200余篇,相关研究论文SCI他引累计超过2500次,获发明专利150余项。研究所目前有教授4名、副教授3名、讲师2名,博士生20余名、硕士生50余名。 |
1:移动机器人及技术 研究内容:研究适应极端地形环境的新概念移动机器人,构建具有国际先进水平的机器人研究平台。 2:力触觉交互、遥操作及虚拟现实系统 研究内容:虚拟/增强/混合现实、力触觉交互、遥操作等及其在巡检救灾机器人、虚拟手术、手术导航等领域中的应用 3:智能系统及控制 研究内容:机器学习,人工智能,信息物理系统,网络化控制系统,复杂系统的辨识、建模与控制等。 |
教育部新世纪优秀人才计划入选者:姚燕安 教育部高等学校科学研究优秀成果技术发明奖二等奖:姚燕安 北京市科学技术奖三等奖:姚燕安 全国第五届机械创新设计大赛国家级一等奖:姚燕安 北京交通大学太原重工奖教金优秀教师:姚燕安 |
1. 国家自然科学基金:多模式杆式移动机构,2012/01-2015/12 2. 国家自然科学基金:整体闭链移动连杆机构的研究,2009/01-2011/12 3. 国家自然科学基金:无线网络控制模块化多面体移动机器人,2015/01-2017/12 4. 国家自然科学基金:高机动性空间单自由度地面移动连杆机构的研究,2016/01-2018/12 5. 国家自然科学基金:虚拟手术训练系统中人机交互问题的研究,2018/01-2021/12 6. 国家自然科学基金:具有虚拟增强功能的新型NOTES手术机器人系统关键问题研究,2018/01-2021/12 7. 国家自然科学基金:面向微电网网络化控制系统的数据完整性攻击检测与安全控制,2018/01-2020/12 8. 国家自然科学基金:交互型机器人的拟人动作设计和评估方法研究,2018/01-2020/12 9. 863计划课题:新概念智能操控载荷技术,2015/07-2016/06 10. 国家仪器重大专项:高分辨率快速图像处理、目标识别算法研究及面向逻辑算法的优化及采集处理模块开发,2014/10-2017/12 11. 国家科技支撑计划:基层公共文化服务数字化技术应用与示范-多面体表演机器人技术研发及演出示范,2015/07- 2017/12 12. 教育部基本科研业务费重点项目:超高适应性多模式机器人作战平台理论与技术研究,2019/04-2024/09 13. 教育部基本科研业务费项目:高通过性杆式移动机构陆基移动平台,2012/12-2014/12 14. 教育部基本科研业务费专题计划:钢轨砂带打磨关键基础问题研究,2014/05-2016/12 15. 教育部联合基金:超冗余多稳态软体机器人,2018/01-2021/12 16. 北京市自然科学基金:虚拟手术训练系统中人际交互问题的研究,2017/01-2019/12 17. 北京市科技专项:几何机器人科学艺术综合展演,2018/03-2019/02 18. 北京市科技专项:双三角锥机器人系列茶农研发与演示,2016/01-2017/03 19. 北京市科技专项:多足步行机器人车辆研发与演示,2015/01-2015/12 20. 北京市科技计划:单级大传动比高承载力行星减速器研制,2019/08-2021/07 21. 红果园:复合导引系统板级测试系统开发,2014/07-2018/08 22. 红果园:测控试验与效果评价系统,2014/08-2016/12 23. 红果园:微光目标模拟系统,2014/09-2015/12 24. 红果园:图像信息编解码技术研究,2015/09—2017/12 25. 红果园:红外目标模拟系统,2015/11-2018/12 26. 红果园:监控与测试系统,2016/04-2018/12 27. 红果园:系统前后端等效软件开发,2016/04-2018/12 28. 红果园:信息处理测控系统开发,2016/06-2019/12 29. 红果园:系统测试仪及等效器软件开发,2016/07—2019/12 30. 红果园:软件非核心模块单元测试及等效器软件开发,2016/11-2020/12 |
[1] Chao Liu, Xindi Chao, Yan-an Yao. Ground mobile Bricard mechanism[J]. Transactions of the ASME-Journal of Mechanisms and Robotics, 2020, 12(4): 041010. [2] Ran Liu, Yan-an Yao, Yezhuo Li. Design and analysis of a deployable tetrahedron-based mobile robot constructed by Sarrus linkages[J]. Mechanism and Machine Theory, 2020, 152: 103964. [3] Yang Liu, Yezhuo Li, Yan-an Yao, et al. Type synthesis of multi-mode mobile parallel mechanisms based on refined virtual chain approach[J]. Mechanism and Machine Theory, 2020, 152: 103908. [4] Ran Liu, Ruiming Li, Yan-an Yao. Reconfigurable deployable Bricard-like mechanism with angulated elements[J]. Mechanism and Machine Theory, 2020, 152: 103917. [5] Qiang Ruan, Yan-an Yao, Jianxu Wu. Analysis and experiments on a novel smoothly moving low-DoF multilegged robot, Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2020, 234(1): 302-317. [6] Qianqian Zhang, Yezhuo Li, Yan-an Yao, et al. Design and locomotivity analysis of two-wheel-like mobile mechanism[J]. Industrial Robot-The International Journal of Robotics and Application, 2020, 47(3): 369-380. [7] Hou W , Liu P X , Zheng M . Modeling of connective tissue damage for blunt dissection of brain tumor in neurosurgery simulation[J]. Computers in Biology and Medicine, 2020:103696. [8] Wang H , Zou Y , Liu P X , et al. Neural-network-based Tracking Control for a Class of Time-Delay Nonlinear Systems with Unmodeled Dynamics[J]. Neurocomputing, B H W A , A Y Z , C P X L , et al. Neural-network-based tracking Control for a Class of time-delay nonlinear systems with unmodeled dynamics[J]. Neurocomputing, 2020, 396:179-190. [9] Ling S , Wang H , Liu P X . Fixed-time adaptive event-triggered tracking control of uncertain nonlinear systems[J]. Nonlinear Dynamics, 2020, 100(4):3381-3397. [10] Bao J , Wang H , Liu P X . Adaptive finite‐time tracking control for robotic manipulators with funnel boundary[J]. International Journal of Adaptive Control and Signal Processing, 2020, 34(5):575-589. [11] Hou W , Liu P X , Zheng M , et al. A New Deformation Model of Brain Tissues for Neurosurgical Simulation[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4):1251-1258. [12] Zhang S , Liu P X , Zheng M , et al. A diffeomorphic unsupervised method for deformable soft tissue image registration[J]. Computers in Biology and Medicine, 2020, 120:103708. [13] Wang H , Liu P X , Bao J , et al. Adaptive Neural Output-Feedback Decentralized Control for Large-Scale Nonlinear Systems With Stochastic Disturbances[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(3):972-983. [14] Ling S , Wang H , Liu P X . Adaptive Fuzzy Tracking Control of Flexible-Joint Robots Based on Command Filtering[J]. IEEE Transactions on Industrial Electronics, 2020,67(5):4046-4055. [15] 郝艳玲, 李锐明, 孙学敏, 姚燕安. 可重构立方体机构的设计与运动模式分析[J]. 机械工程学报, 2020, 56(13): 120-127. [16] 关永瀚, 姚燕安, 刘超. 单自由度八面体概率滚动机器人[J]. 机械工程学报, 2020, 56(7): 44-51. [17] 刘超, 巢鑫迪, 姚燕安. 多模式空间6R地面移动机构[J]. 机械工程学报, 2019, 55(23): 38-47. [18] Wu Jianxu, Yao Yan-an, Li Yibin, et al. Design and analysis of a sixteen-legged vehicle with reconfigurable close-chain leg mechanisms[J]. Transactions of the ASME-Journal of Mechanisms and Robotics, 2019, 11(5):055001. [19] Liu Ran, Yao Yan-an. A novel serial-parallel hybrid worm-like robot with multi-mode undulatory locomotion[J]. Mechanism and Machine Theory, 2019,137:404-431. [20] Wang Zhirui, Yao Yan-an, Liu Chao. Ground mobile bennett mechanism[J]. Transactions of the Canadian Society for Mechanical Engineering, 2019,43(1):69-79. [21] Ling S , Wang H , Liu P X . Adaptive Fuzzy Dynamic Surface Control of Flexible-Joint Robot Systems With Input Saturation[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 006(001):97-107. [22] Wen Shi, Peter Xiaoping Liu, Minhua Zheng. A Mixed-Depth Visual Rendering Method for Bleeding Simulation[J]. IEEE/CAA Journal of Automatica Sinica, 2019,6(4):917-925. [23] Shi W , Liu P X , Zheng M . A new volumetric geometric model for cutting procedures in surgical simulation[J]. Computer Methods and Programs in Biomedicine, 2019, 178:77-84. [24] Hou W , Liu P X , Zheng M . A new model of soft tissue with constraints for interactive surgical simulation[J]. Computer methods and programs in biomedicine, 2019, 175:35-43. [25] Shi W , Liu P X , Zheng M . Cutting procedures with improved visual effects and haptic interaction for surgical simulation systems[J]. Computer methods and programs in biomedicine, 2019, 184:105270. [26] Zheng M , Liu P X , Meng Q H . Interpretation of human and robot emblematic gestures: Howdo they differ?[J]. International Journal of Robotics and Automation, 2019, 34(1):55-70. [27] 孙学敏, 姚燕安, 李锐明, 等. 一类平面对心折展机构的构造方法[J]. 机械工程学报, 2019, 55(11): 176-185. [28] 姚燕安, 张迪, 李晔卓, 等. 多面体网型空间抓捕机构的设计与分析[J]. 南京航空航天大学学报, 2019, 51(3): 263-271. [29] 王志瑞, 姚燕安, 张迪, 等. 冗余驱动全R副四面体移动机器人[J]. 机械工程学报, 2019, 55(3): 18-26. [30] Li Yezhuo, Yao Yan-an, He Yanying. Design and analysis of a multi-mode mobile robot based on a parallel mechanism with branch variation[J]. Mechanism and Machien Theory. 2018, 130: 276-300. [31] Liu Ran, Yao Yan-an, Ding wan, Liu Xiaoping. Locomotion optimization and manipulation planning of the tetrahedron-based mobile mechanism with binary control[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 11. [32] Li Ruiming, Yao Yan-an, Ding Xilun. A family of reconfigurable deployable polyhedral mechanisms based on semiregular and Johnson polyhedral[J]. Mchanism and Machine Theory, 2018, 136: 344-358. [33] Wang H , Karimi H R , Liu P X , et al. Adaptive Neural Control of Nonlinear Systems With Unknown Control Directions and Input Dead-Zone[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(11):1897-1907. [34] Wang H , Liu W , Qiu J , et al. Adaptive Fuzzy Decentralized Control for A Class of Strong Interconnected Nonlinear Systems with Unmodeled Dynamics[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(99):836-846. [35] Bao J , Wang H , Liu P X , et al. Fuzzy Finite-Time Tracking Control for a Class of Nonaffine Nonlinear Systems With Unknown Dead Zones[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, PP:1-12. [36] Shi W , Liu P X , Zheng M . Bleeding Simulation With Improved Visual Effects for Surgical Simulation Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, PP(99):1-10. [37] Zheng M , Liu P X , Gravina R , et al. An Emerging Wearable World: New Gadgetry Produces a Rising Tide of Changes and Challenges[J]. IEEE Systems Man & Cybernetics Magazine, 2018, 4(4):6-14. [38] Ding Wan, Ruan Qiang, Yao Yan-an. Design and locomotion analysis of a novel deformable mobile robot with two spatial reconfigurable platforms and three kinematic chains[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(8):1481-1499. [39] Tian Yaobin, Zhang Dan, Yao Yan-an, et al. A reconfigurable multi-mode mobile parallel robot[J]. Mechanism and Machine Theory, 2017,111: 39-65. [40] Li Yezhuo, Yao Yan-An, Cheng Junlin, et al. An agile assistant robot integrating operation and rolling locomotion[ J]. Industrial Robot, 2017, 44(1): 114-126. [41] Xun Zhiyuan, Yao Yan-an, Li Yezhuo, et al. A novel rhombohedron rolling mechanism[J]. Mechanism and Machine Theory, 2016, 105: 285-303. [42] Li Ruiming, Yao Yan-an, Kong Xianwen. A class of reconfigurable deployable platonic mechanisms, Mechanism and Machine Theory, 2016, 105: 409-427. [43] Tian Yaobin, Yao Yan-An, Ding Wan, et al. Design and locomotion analysis of a novel deformable mobile robot with worm-like, self-crossing and rolling motion[J]. Robotica, 2016, 34(9): 1961-1978. [44] 李锐明, 姚燕安. 具有缩放平台的串并联蠕动机构[J]. 机械工程学报, 2016, 52(23): 94-101. [45] Liu Chao, Yao Shun, Wang Hao, Yao Yan-An. Ground Mobile Schatz Mechanism[J]. Transactions of the ASME-Journal of Mechanisms and Robotics, 2016,8(1): 015002. [46] Liu Chao, Wang Hao, Yao Yan-an. Biped 4R2C Six-bar Mechanism with Inner and Outer Feet[J]. Chinese Journal of Mechanical Engineering, 2016, 29(1): 45-55. [47] Wu Jianxu, Yao Yan-an, RuanQiang. Design and optimization of a dual quadruped vehicle based on whole close-chain mechanism[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017, 231(19): 3601-3613. [48] Li Ruiming, Yao Yan-an. Eversible duoprism mechanism[J]. Frontiers of Mechanical Engineering. 2016, 11(2): 159-169. [49] 姚舜, 刘超, 姚燕安. 单动力可转向爬行Schatz机构[J]. 机械工程学报, 2016, 52(13): 31-37. [50] Tian Yaobin, Yao Yan-An, Wang Jieyu. A Rolling 8-Bar Linkage Mechanism[J]. Transactions of the ASME-Journal of Mechanisms and Robotics, 2015, 7(4): 041002. [51] Ding Wan, Wu Jianxu, Yao Yan-an. Three-dimensional Construction and Omni-directional Rolling Analysis of a Novel Frame-like Lattice Modular Robot[J]. Chinese Journal of Mechanical Engineering, 2015, 28(4): 691-701. [52] Tian Yaobin, Yao Yan-An. Dynamic rolling analysis of triangular-bipyramid robot[J]. Robotica, 2015, 33(4): 884-897. [53] 刘超,王皓,姚燕安. 地面移动Altmann连杆机构[J]. 机械工程学报, 2015, (13) : 125-130 |
|